TABLE 8-3. DMMP COCS AND REGULATORY GUIDELINES | | CHEMICAL | CAS(1)
NUMBER | USE FOR MARINE PROJECTS DMMP MARINE GUIDELINES | | | USE FOR FRESHWATER PROJECTS WITHIN DMMP JURISDICTION SMS FRESHWATER | | |-------------------------------|--|----------------------------------|---|--------|--------|---|---------| | | | | | | | | | | | | | SL | BT | ML | SL1 | SL2 | | | METALS (mg/kg dry weight) | | | | | | | | | Antimony | 7440-36-0 | 150 | | 200 | | | | | Arsenic | 7440-38-2 | 57 | 507.1 | 700 | 14 | 120 | | | Cadmium | 7440-43-9 | 5.1 | | 14 | 2.1 | 5.4 | | | Chromium | 7440-47-3 | 260 | | | 72 | 88 | | | Copper | 7440-50-8 | 390 | | 1,300 | 400 | 1,200 | | | Lead | 7439-92-1 | 450 | 975 | 1,200 | 360 | > 1,300 | | | Mercury | 7439-97-6 | 0.41 | 1.5 | 2.3 | 0.66 | 0.8 | | | Nickel | 7440-02-0 | | | | 38(2) | 110 | | | Selenium | 7782-49-2 | | 3 | | 11 | >20 | | | Silver | 7440-22-4 | 6.1 | | 8.4 | 0.57 | 1.7 | | | Zinc | 7440-66-6 | 410 | | 3,800 | 3,200 | >4,200 | | | ORGANOMETALLIC COMPOUNDS(3) | | | | | | | | Z. | Tributyltin ion (interstitial water; ug/L) | 36643-28-4 | | 0.15 | | | | | 閚 | Tributyltin ion (bulk; ug/kg) ⁽⁴⁾ | 36643-28-4 | | 73 | | 47 | 320 | | STANDARD CHEMICALS OF CONCERN | Monobutyltin ion (bulk; ug/kg) | 78763-54-9 | | | | 540 | >4,800 | | F. | Dibutyltin ion (bulk; ug/kg) | 10-53-502 | | | | 910 | 130,000 | | S | Tetrabutyltin ion (bulk; ug/kg) | 1461-25-2 | | | | 97 | >97 | | 종 | PAHs (µg/kg dry weight) | | | | | | | | Σ | Naphthalene | 91-20-3 | 2,100 | | 2,400 | | | | 異 | Acenaphthylene | 208-96-8 | 560 | | 1,300 | | | | Q | Acenaphthene | 83-32-9 | 500 | | 2,000 | | | | ΑÄ | Fluorene | 86-73-7 | 540 | | 3,600 | | | | ¥ | Phenanthrene | 85-01-8 | 1,500 | | 21,000 | | | | ST/ | Anthracene | 120-12-7 | 960 | | 13,000 | | | | | 1-Methylnaphthalene ⁽⁵⁾ | 90-12-0 | | | | | | | | 2-Methylnaphthalene ⁽⁵⁾ | 91-57-6 | 670 | | 1,900 | | | | | Total LPAH | | 5,200 | | 29,000 | | | | | Fluoranthene | 206-44-0 | 1,700 | 4,600 | 30,000 | | | | | Pyrene | 129-00-0 | 2,600 | 11,980 | 16,000 | | | | | Benz(a)anthracene | 56-55-3 | 1,300 | | 5,100 | | | | | Chrysene | 218-01-9 | 1,400 | | 21,000 | | | | | Benzofluoranthenes (b, j ,k) | 205-99-2
205-82-3
207-08-9 | 3,200 | | 9,900 | | | | | Benzo(a)pyrene | 50-32-8 | 1,600 | | 3,600 | | | | | Indeno(1,2,3-c,d)pyrene | 193-39-5 | 600 | | 4,400 | | | | | Dibenz(a,h)anthracene | 53-70-3 | 230 | | 1,900 | | | | | Benzo(g,h,i)perylene | 191-24-2 | 670 | | 3,200 | | | TABLE 8-3. DMMP COCS AND REGULATORY GUIDELINES | | CHEMICAL | CAS(1)
NUMBER | USE FOR MARINE PROJECTS | | | USE FOR FRESHWATER PROJECTS WITHIN DMMP JURISDICTION | | | | |-------------------|---|------------------|-------------------------|------|--------------|--|--------|--|--| | | | | DMMP MARINE GU | | _ | SMS FRESHWATER | | | | | | Total HPAH | | SL | ВТ | ML
69,000 | SL1 | SL2 | | | | | Total PAHs ⁽⁶⁾ | | 12,000 | | 69,000 | 17,000 | 30,000 | | | | | | //va day woidht) | | | | 17,000 | 30,000 | | | | | CHLORINATED HYDROCARBONS (µg, | | 110 | | 100 | | | | | | | 1,4-Dichlorobenzene | 106-46-7 | 110 | | 120 | | | | | | | 1,2-Dichlorobenzene | 95-50-1 | 35 | | 110 | | | | | | | 1,2,4-Trichlorobenzene | 120-82-1 | 31 | 4.00 | 64 | | | | | | | Hexachlorobenzene (HCB) | 118-74-1 | 22 | 168 | 230 | 7.0 | | | | | | beta-Hexachlorocyclohexane | 319-85-7 | _ | _ | | 7.2 | 11 | | | | | PHTHALATES (µg/kg dry weight) | 101 11 0 | 7.4 | | 4.400 | | | | | | | Dimethyl phthalate | 131-11-3 | 71 | | 1,400 | | | | | | | Diethyl phthalate | 84-66-2 | 200 | | 1,200 | | | | | | | Di-n-butyl phthalate | 84-74-2 | 1,400 | | 5,100 | 380 | 1,000 | | | | | Butyl benzyl phthalate | 85-68-7 | 63 | | 970 | | | | | | | Bis(2-ethylhexyl) phthalate | 117-81-7 | 1,300 | | 8,300 | 500 | 22,000 | | | | | Di-n-octyl phthalate | 117-84-0 | 6,200 | | 6,200 | 39 | >1,100 | | | | | PHENOLS (µg/kg dry weight) | 122.25.2 | | | | | | | | | | Phenol | 108-95-2 | 420 | | 1,200 | 120 | 210 | | | | | 2-Methylphenol | 95-48-7 | 63 | | 77 | | | | | | | 4-Methylphenol | 106-44-5 | 670 | | 3,600 | 260 | 2,000 | | | | | 2,4-Dimethylphenol | 105-67-9 | 29 | | 210 | | | | | | Z. | Pentachlorophenol | 87-86-5 | 400 | 504 | 690 | 1,200 | >1,200 | | | | MICALS OF CONCERN | MISCELLANEOUS EXTRACTABLES (µg/kg dry weight) | | | | | | | | | | Ş | Benzyl alcohol ⁽⁷⁾ | 100-51-6 | 57 | | 870 | | | | | | Ē. | Benzoic acid | 65-85-0 | 650 | | 760 | 2,900 | 3,800 | | | | S O | Dibenzofuran | 132-64-9 | 540 | | 1,700 | 200 | 680 | | | | 칯 | Hexachlorobutadiene | 87-68-3 | 11 | | 270 | | | | | | | N-Nitrosodiphenylamine | 86-30-6 | 28 | | 130 | | | | | | 里 | Carbazole | 86-74-8 | _ | _ | | 900 | 1,100 | | | | 00 | PESTICIDES & PCBs (µg/kg dry weight) | | | | | | | | | | AR. | 4,4'-DDD | 72-54-8 | 16 | | | | | | | | 2 | 4,4'-DDE | 72-55-9 | 9 | | | | | | | | STANDARD CHEI | 4,4'-DDT | 50-29-3 | 12 | | | | | | | | | sum of 4,4'-DDD, 4,4'-DDE, 4,4'- | | | 50 | 69 | | | | | | | DDT | | | | | 040 | 000 | | | | | 2,4'-DDD and 4.4'-DDD | | | | | 310 | 860 | | | | | 2,4'-DDE and 4,4'-DDE | | | | | 21 | 33 | | | | | 2,4'-DDT and 4,4'-DDT | 309-00-2 | 9.5 | | | 100 | 8,100 | | | TABLE 8-3. DMMP COCS AND REGULATORY GUIDELINES | CHEMICAL | | CAS ⁽¹⁾
NUMBER | USE FOR MARINE PROJECTS DMMP MARINE GUIDELINES | | | USE FOR FRESHWATER PROJECTS WITHIN DMMP JURISDICTION SMS FRESHWATER | | | |--------------------------|--|---|---|----|-------|---|-------|--| | | | | SL | ВТ | ML | SL1 | SL2 | | | | Total Chlordane
(sum of cis-chlordane, trans-
chlordane, cis-nonachlor, trans-
nonachlor, oxychlordane) | 5103-71-9
5103-74-2
5103-73-1
39765-80-5
27304-13-8 | 2.8 | 37 | | | | | | | Dieldrin | 60-57-1 | 1.9 | | 1,700 | 4.9 | 9.3 | | | | Heptachlor | 76-44-8 | 1.5 | | 270 | | | | | | Endrin ketone | 53494-70-5 | | | | 8.5 | >8.5 | | | | Total PCBs (Aroclors) | | 130 | 38 | 3,100 | 110 | 2,500 | | | | BULK PETROLEUM HYDROCARBONS (mg/kg) | | | | | | | | | | TPH - Diesel | | | | | 340 | 510 | | | | TPH - Residual | | | | | 3,600 | 4,400 | | | ш | DIOXINS/FURANS | | | | | | | | | CASE-BY-CASE
COCs (9) | Total TEQ (ng/kg dry weight) | | Puget Sound: see 8.3.2 Grays Harbor: see 8.3.3 Other Waters: see 8.3.4 | | | See 8.3.4 | | | ⁽¹⁾ Chemical Abstract Service Registry Number Analytes printed in blue apply ONLY to freshwater. ⁽²⁾ The Nickel SL1 value is based on the 90th percentile of soil background data from WA state (Ecology, 1994), and was adopted by the DMMP agencies at the 2014 SMARM (DMMP/RSET, 2014b) ⁽³⁾ TBT and dioxins/furans are not standard COCs for marine projects. They may be required on a case-by-case basis (see **8.3 and 8.4**). All butyltins are required for freshwater projects unless their absence is demonstrated in Tier 1 analysis. ⁽⁴⁾ Bulk sediment measurement of TBT is recommended for dredged material and Z-sample evaluations, although porewater TBT remains an option. See **8.4.2** for further details. ^{(5) 1-}Methylnaphthalene and 2-Methylnaphthalene are included in the summation of total PAH for freshwater projects. 2-Methylnaphthalene is analyzed for marine projects but is not included in the summation for total LPAHs. 1-Methylnaphthalene is not analyzed for marine projects. ⁽⁶⁾ Total PAHs for freshwater projects include the sum of all PAHs listed. ⁽⁷⁾ DMMP agencies will use BPJ to determine the need for biological testing for projects in which benzyl alcohol is the only COC present in project sediments (<u>DMMP</u>, <u>2016</u>a). ⁽⁸⁾ This value is normalized to total organic carbon and is expressed in mg/kg carbon. ⁽⁹⁾ Analyses required only when there is sufficient reason-to-believe for presence in a given project or location.